organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Amino(5-{2-[amino(iminio)methyl]hydrazin-1-yl}-3,5-dimethyl-4,5-dihydro-1*H*-pyrazol-1-yl)methaniminium dinitrate

Sladjana B. Novaković,^a* Mirjana Lalović,^b Vladimir Divjaković,^b Ljiljana S. Vojinović-Ješić^b and Valerija I. Češljević^b

^aVinča Institute of Nuclear Sciences, Laboratory of Theoretical Physics and Condensed Matter Physics, PO Box 522, 11001 Belgrade, Serbia, and ^bDepartment of Chemistry, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia

Correspondence e-mail: snovak@vinca.rs

Received 21 June 2010; accepted 25 June 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.043; wR factor = 0.114; data-to-parameter ratio = 9.5.

The reaction of aqueous solutions of aminoguanidine hydrogennitrate and acetylacetone produces the title pyrazole salt, $C_7H_{18}N_8^{2+}\cdot 2NO_3^{-}$. The crystal structure is stabilized by a complex N-H···O hydrogen-bonding network. The difference in the engagement of the two nitrate anions in hydrogen bonding is reflected in the variation of the corresponding N-O bond lengths.

Related literature

For the biological activity of pyrazole derivatives, see: Farag *et al.* (2008); Stauffer *et al.* (2000). For the coordination chemistry of pyrazole derivatives, see: Mukherjee (2000); Mani (1992). For related structures, see: Cousson *et al.* (1991*a,b*); Kettmann & Světlík (2002); Khudoyarov *et al.* (1995). For hydrogen-bonding motifs, see: Bernstein *et al.* (1995); Etter *et al.* (1990). Thiele & Dralle (1898) reported that the reaction of aqueous aminoguanidine hydrogennitrate and acetylacetone solutions led to the formation of acetylacetonebis(aminoguanidine) dihydrogendinitrate ($C_7H_{16}N_8$ ·2HNO₃). However, our investigations of the crystal and molecular structure of the obtained product have shown that this reaction did not form the cited Schiff base but a cyclic product of the same chemical composition.

V = 1485.24 (7) Å³

Mo $K\alpha$ radiation

 $0.42 \times 0.35 \times 0.26 \text{ mm}$

1997 independent reflections

1548 reflections with $I > 2\sigma(I)$

 $\mu = 0.13 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.017$

Z = 4

Experimental

Crystal data

 $\begin{array}{l} C_{7}H_{18}N_{8}^{2+}\cdot 2\mathrm{NO_{3}}^{-}\\ M_{r}=338.31\\ \mathrm{Orthorhombic}, P2_{1}2_{1}2_{1}\\ a=7.5025~(2)~\mathrm{\AA}\\ b=13.8946~(4)~\mathrm{\AA}\\ c=14.2477~(3)~\mathrm{\AA}\\ \end{array}$

Data collection

Oxford Diffraction Xcalibur	
Sapphire3 (Gemini Mo)	
diffractometer	
4760 measured reflections	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	210 parameters
$vR(F^2) = 0.114$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.42 \text{ e} \text{ Å}^{-3}$
997 reflections	$\Delta \rho_{\rm min} = -0.33 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N3-H3···O5 ⁱ	0.86	2.52	3.048 (3)	120
$N4-H4\cdots O6^{ii}$	0.86	2.48	3.331 (5)	173
$N5-H5A\cdots O4$	0.86	2.50	3.138 (4)	132
$N5-H5A\cdots O5$	0.86	2.19	3.048 (4)	174
$N5-H5B\cdots O3^{iii}$	0.86	2.23	2.934 (3)	139
$N6-H6A\cdotsO1^{iv}$	0.86	2.22	3.022 (3)	154
$N6-H6B\cdots O4^{ii}$	0.86	2.04	2.905 (4)	179
$N7 - H7A \cdots O1$	0.86	2.07	2.899 (3)	162
$N8 - H8A \cdots O2$	0.86	2.04	2.897 (3)	172
N8-H8 B ···O2 ⁱⁱⁱ	0.86	2.23	2.990 (3)	148

Symmetry codes: (i) x + 1, y, z; (ii) $-x + \frac{1}{2}$, -y + 1, $z - \frac{1}{2}$; (iii) $x + \frac{1}{2}$, $-y + \frac{1}{2}$, -z + 2; (iv) -x, $y + \frac{1}{2}$, $-z + \frac{3}{2}$.

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2008); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999), *PLATON* (Spek, 2009) and *PARST* (Nardelli, 1983, 1995).

This work was supported by the Ministry of Science and Technological Development of the Republic of Serbia (grant No. 142028) and the Provincial Secretariat for Science and Technological Development of Vojvodina.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2584).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Cousson, A., Bachet, B., Kokel, B. & Hubert-Habart, M. (1991*a*). Acta Cryst. C47, 1885–1888.
- Cousson, A., Robert, F. & Hubert-Habart, M. (1991b). Acta Cryst. C47, 395–397.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. Farag, A. M., Mayhoub, A. S., Barakat, S. E. & Bayomi, A. H. (2008). *Bioorg.*
- Med. Chem. 16, 881-889.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Kettmann, V. & Světlík, J. (2002). Acta Cryst. C58, 0423-0424.

- Khudoyarov, A. B., Mirdzhalalov, F. F., Sharipov, Kh. T. & Khudaiberdyeva, S. P. (1995). Uzb. Chem. J. pp. 5–6.
- Mani, F. (1992). Coord. Chem. Rev. 120, 325–359.
- Mukherjee, R. (2000). Coord. Chem. Rev. 203, 151-218.
- Nardelli, M. (1983). Comput. Chem. 7, 95–97.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stauffer, S. R., Coletta, C. J., Tedesco, R., Nishiguchi, G., Carlson, K., Sun, J., Katzenellenbogen, B. S. & Katzenellenbogen, J. A. (2000). J. Med. Chem. 43, 4934–4947.
- Thiele, J. & Dralle, E. (1898). Annalen, 302, 275-334.

Acta Cryst. (2010). E66, o1916-o1917 [doi:10.1107/S1600536810025006]

Amino(5-{2-[amino(iminio)methyl]hydrazin-1-yl}-3,5-dimethyl-4,5-dihydro-1*H*-pyrazol-1-yl)methaniminium dinitrate

S. B. Novakovic, M. Lalovic, V. Divjakovic, L. S. Vojinovic-Jesic and V. I. Cesljevic

Comment

In the paper (Thiele & Dralle, 1898) the reaction of aqueous aminoguanidine hydrogennitrate and acetylacetone solutions was described which, according to the authors, led to the formation of acetylacetonebis(aminoguanidine) dihydrogendini-trate ($C_7H_{16}N_8.2HNO_3$). However, our investigations of the crystal and molecular structure of the obtained product have shown that this reaction did not form the cited Schiff base but a cyclic product of the same chemical composition, *i.e.* amino(2-(1-(amino(iminio)methyl)-3,5-dimethyl-4,5-dihydro- 1*H*-pyrazol-5-yl)hydrazinyl)methaniminium-dinitrate (I).

Due to the presence of the nitrate anions next to the cation rich in N—H donor sites, the crystal structure of (I) (Figure 1) is stabilized by a very extensive hydrogen bonding network. The pair of the strongest hydrogen bonds (Table 1), N7—H7a···O1 and N8—H8a···O2, connects the protonated $-C(NH_2)_2$ substituent of the pyrazole ring to the single N9/O1/ O2/O3 group generating an $R^2_2(8)$ motif (Etter *et al.*, 1990; Bernstein *et al.*, 1995). The same nitrate group forms two additional hydrogen bonds (N5-H5b···O3 and N8-H8b···O2) that interlink the two -C(NH₂)₂ fragments of the pyrazolyl and hydrazinyl parts of the single molecule, producing the larger $R^2_2(13)$ motif. These interactions, which are all shorter than 2.23 Å, generate a zigzag chain parallel to [100]. The hydrazinyl moiety of the cation also forms $R^2_2(8)$ hydrogen bonding motif by engaging N4—H4 and N6—H6b as donors to O6 and O4, respectively. In addition, the same nitrate anion (N10/O4/O5/O6) is involved in the bifurcated N5-H5a···O4 and N5-H5a···O5 hydrogen bond. The combination of these interactions extends the hydrogen bonding network toward [001] direction resulting in two-dimensional molecular arrays (Figure 2). This arrangement is also supported by two the strongest C—H···O interactions, while remaining N—-H6a···O1 and the weaker N—H…O and C—H…O interactions complete the three-dimensional structure. It is noteworthy that the nitrate group N9/O1/O2/O3 has the higher engagement in the strong hydrogen bonds (five hydrogen bonds < 2.23 Å) than N10/O4/O5/O6 (two hydrogen bonds < 2.23 Å). This is reflected in the corresponding N—O distances which in the first anion range from 1.212 (3)–1.269 (3) while in the second from 1.195 (4)–1.248 (3) Å. The oxygen atom of the shortest N-O6 bond engages only in weak N-H-O and C-H-O interactions.

Experimental

To a solution of aminoguanidine hydrogennitrate (1.4 g, 10 mmol) in H_2O (20 ml) acetylacetone (0.5 ml, 5 mmol) was added. The reaction mixture was homogenized by stirring on magnetic stirrer (20 min) at room temperature. After three days the resulting white crystals have been filtered and washed with water (35% yield).

Refinement

The H atoms bonded to C and N atoms were placed at geometrically calculated positions and refined using a riding model. C—H distances were fixed to 0.96 and 0.97 Å from methyl and methylene C atoms respectively. Their $U_{iso}(H)$ values where

equal to 1.5 times U_{eq} of the corresponding C (*sp*³) atom. N—H distances were fixed to 0.86 Å with $U_{iso}(H)$ values equal to 1.2 U_{eq} of the parent N.

In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed.

Figures

Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.

Fig. 2. The packing diagram of (I), view approxymately normal to (010). H atoms not involved in hydrogen bonding have been omitted for clarity.

Amino(5-{2-[amino(iminio)methyl]hydrazin-1-yl}-3,5-dimethyl-4,5-dihydro- 1H-pyr	azol-1-yl)methaniminium
dinitrate	

Crystal data

$C_7H_{18}N_8^{2+}\cdot 2NO_3^{-}$	F(000) = 712
$M_r = 338.31$	$D_{\rm x} = 1.513 \ {\rm Mg \ m^{-3}}$
Orthorhombic, $P2_12_12_1$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 2501 reflections
a = 7.5025 (2) Å	$\theta = 3.1 - 29.1^{\circ}$
<i>b</i> = 13.8946 (4) Å	$\mu = 0.13 \text{ mm}^{-1}$
c = 14.2477 (3) Å	T = 293 K
V = 1485.24 (7) Å ³	Prism, white
Z = 4	$0.42 \times 0.35 \times 0.26$ mm

Data collection

Oxford Diffraction Xcalibur Sapphire3 (Gemini Mo) diffractometer	1548 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.017$
graphite	$\theta_{\text{max}} = 29.2^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
Detector resolution: 16.3280 pixels mm ⁻¹	$h = -10 \rightarrow 7$
ω scans	$k = -16 \rightarrow 17$

sup-3

supp	lementary	y material	S
------	-----------	------------	---

4760 measured reflections	
1997 independent reflections	

Re	finem	ont
ne	inemi	sni

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.114$	H-atom parameters constrained
<i>S</i> = 1.03	$w = 1/[\sigma^2(F_o^2) + (0.0719P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
1997 reflections	$(\Delta/\sigma)_{max} < 0.001$
210 parameters	$\Delta \rho_{max} = 0.42 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.33 \ {\rm e} \ {\rm \AA}^{-3}$

 $l = -19 \rightarrow 19$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.6023 (3)	0.23138 (16)	0.72769 (15)	0.0309 (5)
N2	0.5967 (3)	0.19338 (16)	0.63655 (16)	0.0322 (5)
N3	0.6670 (3)	0.39564 (15)	0.76413 (15)	0.0296 (5)
H3	0.6855	0.4255	0.8161	0.036*
N4	0.5571 (3)	0.43172 (16)	0.69281 (15)	0.0312 (5)
H4	0.5944	0.4349	0.6359	0.037*
N5	0.3293 (3)	0.44897 (18)	0.79956 (16)	0.0382 (6)
H5A	0.2228	0.4676	0.8127	0.046*
H5B	0.3938	0.4222	0.8421	0.046*
N6	0.2960 (3)	0.50226 (18)	0.64889 (17)	0.0412 (6)
H6A	0.1894	0.5212	0.6611	0.049*
H6B	0.3394	0.5100	0.5935	0.049*
N7	0.3393 (3)	0.15173 (18)	0.75060 (18)	0.0427 (6)
H7A	0.2524	0.1339	0.7860	0.051*
H7B	0.3423	0.1341	0.6928	0.051*
N8	0.4640 (3)	0.23279 (18)	0.87330 (18)	0.0410 (6)

H8A	0.3773	0.2151	0.9088	0.049*
H8B	0.5481	0.2681	0.8956	0.049*
C1	0.7481 (3)	0.30221 (18)	0.74174 (19)	0.0283 (5)
C2	0.8406 (4)	0.2956 (2)	0.6454 (2)	0.0340 (6)
H2A	0.8451	0.3581	0.6152	0.041*
H2B	0.9610	0.2710	0.6517	0.041*
C3	0.7278 (4)	0.22799 (19)	0.59131 (19)	0.0318 (6)
C4	0.7588 (5)	0.2006 (2)	0.4917 (2)	0.0477 (8)
H4A	0.6762	0.1511	0.4740	0.071*
H4B	0.8784	0.1772	0.4846	0.071*
H4C	0.7418	0.2559	0.4523	0.071*
C5	0.4681 (3)	0.20601 (18)	0.78507 (19)	0.0306 (6)
C6	0.8751 (4)	0.2760 (2)	0.8205 (2)	0.0426 (7)
H6C	0.9766	0.3181	0.8188	0.064*
H6D	0.9139	0.2106	0.8129	0.064*
H6E	0.8153	0.2828	0.8797	0.064*
C7	0.3929 (3)	0.46119 (18)	0.71523 (17)	0.0268 (5)
N9	0.0699 (3)	0.09061 (19)	0.95468 (15)	0.0364 (6)
O1	0.0933 (3)	0.05303 (16)	0.87444 (13)	0.0442 (5)
02	0.1651 (3)	0.15852 (17)	0.97976 (16)	0.0521 (6)
N10	-0.0557 (4)	0.52379 (19)	0.92350 (18)	0.0418 (6)
O3	-0.0469 (3)	0.0598 (3)	1.00527 (15)	0.0752 (9)
O4	0.0522 (4)	0.4704 (3)	0.9632 (2)	0.0828 (9)
05	-0.0419 (3)	0.52961 (19)	0.83639 (16)	0.0562 (6)
06	-0.1669 (5)	0.5670 (2)	0.9663 (3)	0.1010 (12)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0339 (11)	0.0319 (11)	0.0268 (10)	-0.0079 (10)	0.0053 (10)	-0.0029 (10)
N2	0.0347 (11)	0.0323 (11)	0.0295 (10)	-0.0007 (10)	-0.0011 (11)	-0.0039 (10)
N3	0.0314 (11)	0.0302 (11)	0.0273 (10)	0.0030 (10)	-0.0032 (10)	-0.0059 (10)
N4	0.0311 (12)	0.0389 (12)	0.0238 (9)	0.0040 (11)	0.0021 (10)	0.0021 (10)
N5	0.0331 (11)	0.0514 (15)	0.0302 (10)	0.0120 (12)	0.0026 (11)	0.0029 (12)
N6	0.0418 (14)	0.0496 (14)	0.0323 (12)	0.0167 (13)	-0.0042 (10)	0.0003 (12)
N7	0.0363 (12)	0.0479 (13)	0.0440 (14)	-0.0148 (12)	0.0069 (12)	0.0011 (13)
N8	0.0413 (13)	0.0484 (14)	0.0334 (12)	-0.0106 (12)	0.0098 (12)	0.0002 (12)
C1	0.0249 (12)	0.0282 (11)	0.0318 (13)	-0.0012 (11)	-0.0016 (11)	-0.0002 (12)
C2	0.0293 (13)	0.0360 (14)	0.0365 (14)	0.0026 (12)	0.0068 (12)	-0.0006 (13)
C3	0.0342 (14)	0.0291 (12)	0.0320 (13)	0.0052 (12)	0.0005 (12)	-0.0022 (12)
C4	0.0491 (17)	0.0572 (19)	0.0367 (15)	0.0090 (17)	0.0088 (15)	-0.0050 (16)
C5	0.0320 (13)	0.0259 (12)	0.0338 (13)	0.0012 (11)	0.0035 (12)	0.0037 (11)
C6	0.0338 (15)	0.0535 (18)	0.0403 (16)	0.0079 (15)	-0.0081 (13)	0.0023 (15)
C7	0.0272 (12)	0.0267 (12)	0.0265 (11)	0.0001 (11)	-0.0026 (11)	-0.0047 (10)
N9	0.0317 (12)	0.0526 (15)	0.0249 (10)	-0.0043 (12)	0.0015 (11)	-0.0007 (11)
01	0.0482 (11)	0.0567 (13)	0.0277 (9)	-0.0101 (11)	0.0064 (10)	-0.0083 (10)
O2	0.0543 (13)	0.0573 (13)	0.0448 (12)	-0.0216 (12)	0.0073 (11)	-0.0166 (12)
N10	0.0405 (14)	0.0442 (15)	0.0405 (13)	-0.0054 (13)	-0.0008 (12)	-0.0085 (12)

O3 O4	0.0620 (15)	0.130 (3)	0.0335 (11)	-0.0500(18) 0.012(2)	0.0185(12) -0.0325(17)	-0.0166 (15) 0.0030 (16)
05	0.057(14)	0.097(2)	0.0370(13) 0.0430(11)	-0.0017(14)	-0.0097(11)	0.00000(10)
06	0.092(2)	0.0099(19)	0.131 (3)	0.0017(11)	0.061 (2)	-0.035(2)
00	0.072 (2)	0.0757 (15)	0.151 (5)	0.007 (2)	0.001 (2)	0.055 (2)
Geometric paran	neters (Å, °)					
N1—C5		1.344 (3)	N8—H8B		0.8605	
N1—N2		1.403 (3)	C1—C	6	1.517 (4)	
N1—C1		1.485 (3)	C1—C2	2	1.541 (4)	
N2—C3		1.271 (4)	C2—C	3	1.480 (4)	
N3—N4		1.402 (3)	С2—Ні	2A	0.9700	
N3—C1		1.469 (3)	С2—Н	2B	0.9700	
N3—H3		0.8601	C3—C4	1	1.488 (4)	
N4—C7		1.336 (3)	C4—H4	4A	0.9600	
N4—H4		0.8593	C4—H4	4B	0.9600	
N5—C7		1.304 (3)	C4—H4C		0.9600	
N5—H5A		0.8606	С6—Н6С		0.9600	
N5—H5B		0.8597	С6—Н	6D	0.9600)
N6—C7		1.322 (3)	С6—Н	6E	0.9600)
N6—H6A		0.8597	N9—O	3	1.212	(3)
N6—H6B		0.8606	N9—O	2	1.236	(3)
N7—C5		1.320 (4)	N9—O	1	1.269	(3)
N7—H7A		0.8605	N10—0	06	1.195	(4)
N7—H7B		0.8594	N10—0	04	1.235	(4)
N8—C5		1.311 (4)	N10—0)5	1.248	(3)
N8—H8A		0.8597				
C5—N1—N2		116.2 (2)	C3—C2	2—Н2В	110.9	
C5—N1—C1		130.1 (2)	C1—C2	2—Н2В	110.9	
N2—N1—C1		113.4 (2)	H2A—	С2—Н2В	109.0	
C3—N2—N1		107.7 (2)	N2—C	3—С2	114.8	(2)
N4—N3—C1		113.7 (2)	N2—C	3—С4	120.5	(3)
N4—N3—H3		123.2	C2—C3	3—C4	124.7	(3)
C1—N3—H3		123.1	C3—C4	4—H4A	109.5	
C7—N4—N3		118.6 (2)	C3—C4	4—H4B	109.5	
C7—N4—H4		120.7	H4A—	C4—H4B	109.5	
N3—N4—H4		120.7	C3—C4	4—H4C	109.5	
C7—N5—H5A		120.0	H4A—	C4—H4C	109.5	
C7—N5—H5B		120.0	H4B—4	C4—H4C	109.5	
H5A—N5—H5B		120.0	N8—C	5—N7	120.1	(3)
C7—N6—H6A		120.0	N8—C:	5—N1	121.7	(3)
C7—N6—H6B		120.1	N7—C:	5—N1	118.2	(2)
H6A—N6—H6B		120.0	C1—Ce	6—Н6С	109.5	
C5—N7—H7A		120.0	C1—Ce	5—H6D	109.5	
C5—N7—H7B		120.0	H6C—	C6—H6D	109.5	
H7A—N7—H7B		120.0	C1—Ce	b—H6E	109.5	
C5—N8—H8A		120.0	Н6С—	С6—Н6Е	109.5	
C5—N8—H8B		119.9	H6D—	С6—Н6Е	109.5	
H8A—N8—H8B		120.0	N5—C	7—N6	120.9	(2)

N3—C1—N1	108.1 (2)	N5C7N4	121.2 (2)
N3—C1—C6	108.1 (2)	N6—C7—N4	117.9 (2)
N1—C1—C6	113.8 (2)	O3—N9—O2	121.0 (3)
N3—C1—C2	115.6 (2)	O3—N9—O1	119.3 (3)
N1—C1—C2	99.90 (19)	O2—N9—O1	119.6 (2)
C6—C1—C2	111.2 (2)	O6—N10—O4	121.7 (3)
C3—C2—C1	104.1 (2)	O6—N10—O5	122.2 (3)
C3—C2—H2A	110.9	O4—N10—O5	116.1 (3)
C1—C2—H2A	110.9		
C5—N1—N2—C3	177.1 (2)	N1—C1—C2—C3	3.4 (2)
C1—N1—N2—C3	3.2 (3)	C6—C1—C2—C3	123.9 (2)
C1—N3—N4—C7	129.5 (2)	N1—N2—C3—C2	-0.6 (3)
N4—N3—C1—N1	-61.2 (3)	N1—N2—C3—C4	179.7 (2)
N4—N3—C1—C6	175.2 (2)	C1—C2—C3—N2	-1.9 (3)
N4—N3—C1—C2	49.7 (3)	C1—C2—C3—C4	177.7 (3)
C5—N1—C1—N3	-55.7 (3)	N2—N1—C5—N8	176.2 (2)
N2—N1—C1—N3	117.2 (2)	C1—N1—C5—N8	-11.1 (4)
C5—N1—C1—C6	64.4 (4)	N2—N1—C5—N7	-2.9 (4)
N2—N1—C1—C6	-122.7 (3)	C1—N1—C5—N7	169.8 (2)
C5—N1—C1—C2	-176.9 (3)	N3—N4—C7—N5	-6.1 (4)
N2—N1—C1—C2	-4.1 (3)	N3—N4—C7—N6	174.6 (2)
N3—C1—C2—C3	-112.3 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N3—H3···O5 ⁱ	0.86	2.52	3.048 (3)	120.
N4—H4···O6 ⁱⁱ	0.86	2.48	3.331 (5)	173.
N5—H5A…O4	0.86	2.50	3.138 (4)	132.
N5—H5A···O5	0.86	2.19	3.048 (4)	174.
N5—H5B···O3 ⁱⁱⁱ	0.86	2.23	2.934 (3)	139.
N6—H6A···O1 ^{iv}	0.86	2.22	3.022 (3)	154.
N6—H6B···O4 ⁱⁱ	0.86	2.04	2.905 (4)	179.
N7—H7A…O1	0.86	2.07	2.899 (3)	162.
N8—H8A···O2	0.86	2.04	2.897 (3)	172.
N8—H8B···O2 ⁱⁱⁱ	0.86	2.23	2.990 (3)	148.

Symmetry codes: (i) x+1, y, z; (ii) -x+1/2, -y+1, z-1/2; (iii) x+1/2, -y+1/2, -z+2; (iv) -x, y+1/2, -z+3/2.

